Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Med Biol ; 68(13)2023 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-37276866

RESUMO

Objective. This paper proposes a conditional GAN (cGAN)-based method to perform data enhancement of ultrasound images and segmentation of tumors in breast ultrasound images, which improves the reality of the enhenced breast ultrasound image and obtains a more accurate segmentation result.Approach. We use the idea of generative adversarial training to accomplish the following two tasks: (1) in this paper, we use generative adversarial networks to generate a batch of samples with labels from the perspective of label-generated images to expand the dataset from a data enhancement perspective. (2) In this paper, we use adversarial training instead of postprocessing steps such as conditional random fields to enhance higher-level spatial consistency. In addition, this work proposes a new network, EfficientUNet, based on U-Net, which combines ResNet18, an attention mechanism and a deep supervision technique. This segmentation model uses the residual network as an encoder to retain the lost information in the original encoder and can avoid the gradient disappearance problem to improve the feature extraction ability of the model, and it also uses deep supervision techniques to speed up the convergence of the model. The channel-by-channel weighting module of SENet is then used to enable the model to capture the tumor boundary more accurately.Main results. The paper concludes with experiments to verify the validity of these efforts by comparing them with mainstream methods on Dataset B. The Dice score and IoU score reaches 0.8856 and 0.8111, respectively.Significance. This study successfully combines cGAN and optimized EfficientUNet for the segmentation of breast tumor ultrasound images. The conditional generative adversarial network has a good performance in data enhancement, and the optimized EfficientUNet makes the segmentation more accurate.


Assuntos
Processamento de Imagem Assistida por Computador , Neoplasias , Feminino , Humanos , Processamento de Imagem Assistida por Computador/métodos , Ultrassonografia , Ultrassonografia Mamária
2.
J Ultrasound Med ; 41(7): 1643-1655, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34609750

RESUMO

OBJECTIVES: To develop and test an optimized radiomics model based on multi-planar automated breast volume scan (ABVS) images to identify malignant and benign breast lesions. METHODS: Patients (n = 200) with breast lesions who underwent ABVS examinations were included. For each patient, 208 radiomics features were extracted from the ABVS images, including axial plane and coronal plane. Recursive feature elimination, random forest, and chi-square test were used to select features. A support vector machine, logistic regression, and extreme gradient boosting were utilized as classifiers to differentiate malignant and benign breast lesions. The area under the curve, sensitivity, specificity, accuracy, and precision was used to evaluate the performance of the radiomics models. Generalization of the radiomics models was verified through 5-fold cross-validation. RESULTS: For a single plane or a combination of planes, a combination of recursive feature elimination, and support vector machine yielded the best performance when identifying breast lesions. The machine learning models based on a combination of planes performed better than those based on a single plane. Regarding the axial plane and coronal plane, the machine learning model using a combination of recursive feature elimination and support vector machine yielded the optimal identification performance: average area under the curve (0.857 ± 0.058, 95% confidence interval, 0.763-0.957); the average values of sensitivity, specificity, accuracy, and precision were 87.9, 68.2, 80.7, and 82.9%, respectively. CONCLUSIONS: The optimized radiomics model based on ABVS images can provide valuable information for identifying benign and malignant breast lesions preoperatively and guide the accurate clinical treatment. Further external validation is required.


Assuntos
Aprendizado de Máquina , Máquina de Vetores de Suporte , Mama/diagnóstico por imagem , Humanos , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...